Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add filters

Document Type
Year range
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.05.26.542489

ABSTRACT

With the rapid spread and evolution of SARS-CoV-2, the ability to monitor its transmission and distinguish among viral lineages is critical for pandemic response efforts. The most commonly used software for the lineage assignment of newly isolated SARS-CoV-2 genomes is pangolin, which offers two methods of assignment, pangoLEARN and pUShER. PangoLEARN rapidly assigns lineages using a machine learning algorithm, while pUShER performs a phylogenetic placement to identify the lineage corresponding to a newly sequenced genome. In a preliminary study, we observed that pangoLEARN (decision tree model), while substantially faster than pUShER, offered less consistency across different versions of pangolin v3. Here, we expand upon this analysis to include v3 and v4 of pangolin, which moved the default algorithm for lineage assignment from pangoLEARN in v3 to pUShER in v4, and perform a thorough analysis confirming that pUShER is not only more stable across versions but also more accurate. Our findings suggest that future lineage assignment algorithms for various pathogens should consider the value of phylogenetic placement.

2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.02.17.529036

ABSTRACT

Identifying and tracking recombinant strains of SARS-CoV-2 is critical to understanding the evolution of the virus and controlling its spread. But confidently identifying SARS-CoV-2 recombinants from thousands of new genome sequences that are being shared online every day is quite challenging, causing many recombinants to be missed or suffer from weeks of delay in being formally identified while undergoing expert curation. We present RIVET - a software pipeline and visual platform that takes advantage of recent algorithmic advances in recombination inference to comprehensively and sensitively search for potential SARS-CoV-2 recombinants, and organizes the relevant information in a web interface that would help greatly accelerate the process identifying and tracking recombinants.

3.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.02.03.527052

ABSTRACT

Pathogen nomenclature systems are a key component of effective communication and collaboration for researchers and public health workers. Since February 2021, the Pango nomenclature for SARS-CoV-2 has been sustained by crowdsourced lineage proposals as new isolates were added to a growing global dataset. This approach to dynamic lineage designation is dependent on a large and active epidemiological community identifying and curating each new lineage. This is vulnerable to time-critical delays as well as regional and personal bias. To address these issues, we developed a simple heuristic approach that divides a phylogenetic tree into lineages based on shared ancestral genotypes. We additionally provide a framework that automatically prioritizes the lineages by growth rate and association with key mutations or locations, extensible to any pathogen. Our implementation is efficient on extremely large phylogenetic trees and produces similar results to existing Pango lineage designations when applied to SARS-CoV-2. This method offers a simple, automated and consistent approach to pathogen nomenclature that can assist researchers in developing and maintaining phylogeny-based classifications in the face of ever increasing genomic datasets.

4.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.09.27.509649

ABSTRACT

Exposure to different mutagens leaves distinct mutational patterns that can allow prediction of pathogen replication niches (Ruis 2022). We therefore hypothesised that analysis of SARS-CoV-2 mutational spectra might show lineage-specific differences, dependant on the dominant site(s) of replication and onwards transmission, and could therefore rapidly infer virulence of emergent variants of concern (VOC; Konings 2021). Through mutational spectrum analysis, we found a significant reduction in G>T mutations in Omicron, which replicates in the upper respiratory tract (URT), compared to other lineages, which replicate in both upper and lower respiratory tracts (LRT). Mutational analysis of other viruses and bacteria indicates a robust, generalisable association of high G>T mutations with replication within the LRT. Monitoring G>T mutation rates over time, we found early separation of Omicron from Beta, Gamma and Delta, while the mutational burden in Alpha varied consistent with changes in transmission source as social restrictions were lifted. This supports the use of mutational spectra to infer niches of established and emergent pathogens.

5.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.04.10.487712

ABSTRACT

Summary Neighbour-Joining is one of the most widely used distance-based phylogenetic inference methods. However, current implementations do not scale well for datasets with more than 10,000 sequences. Given the increasing pace of generating new sequence data, particularly in outbreaks of emerging diseases, and the already enormous existing databases of sequence data for which NJ is a useful approach, new implementations of existing methods are warranted. Here we present DecentTree, which provides highly optimised and parallel implementations of Neighbour-Joining and several of its variants. DecentTree is designed as a stand-alone application and a header-only library easily integrated with other phylogenetic software (e.g. it is integral in the popular IQ-TREE software). We show that DecentTree shows similar or improved performance over existing software (BIONJ, Quicktree, FastME, and RapidNJ), especially for handling very large alignments. For example, DecentTree is up to 6-fold faster than the fastest existing Neighbour-Joining software (e.g. RapidNJ) when generating a tree of 64,000 SARS-CoV-2 genomes. Availability and implementation DecentTree is open source and freely available at https://github.com/iqtree/decenttree . Contact Minh Bui: m.bui@anu.edu.au ; Robert Lanfear: rob.lanfear@anu.edu.au Supplementary information Supplementary data are available at Bioinformatics online.


Subject(s)
Epilepsy, Frontal Lobe
6.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.03.22.485312

ABSTRACT

Genomic data plays an essential role in the study of transmissible disease, as exemplified by its current use in identifying and tracking the spread of novel SARS-CoV-2 variants. However, with the increase in size of genomic epidemiological datasets, their phylogenetic analyses become increasingly impractical due to high computational demand. In particular, while maximum likelihood methods are go-to tools for phylogenetic inference, the scale of datasets from the ongoing pandemic has made apparent the urgent need for more computationally efficient approaches. Here we propose a new likelihood-based phylogenetic framework that greatly reduces both the memory and time demand of popular maximum likelihood approaches when analysing many closely related genomes, as in the scenario of SARS-CoV-2 genome data and more generally throughout genomic epidemiology. To achieve this, we rewrite the classical Felsenstein pruning algorithm so that we can infer phylogenetic trees on at least 10 times larger datasets with higher accuracy than existing maximum likelihood methods. Our algorithms provide a powerful framework for maximum-likelihood genomic epidemiology and could facilitate similarly groundbreaking applications in Bayesian phylogenomic analyses as well.

7.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.12.475688

ABSTRACT

Phylogenetic tree optimization is necessary for precise analysis of evolutionary and transmission dynamics, but existing tools are inadequate for handling the scale and pace of data produced during the COVID-19 pandemic. One transformative approach, online phylogenetics, aims to incrementally add samples to an ever-growing phylogeny, but there are no previously-existing approaches that can efficiently optimize this vast phylogeny under the time constraints of the pandemic. Here, we present matOptimize, a fast and memory-efficient phylogenetic tree optimization tool based on parsimony that can be parallelized across multiple CPU threads and nodes, and provides orders of magnitude improvement in runtime and peak memory usage compared to existing state-of-the-art methods. We have developed this method particularly to address the pressing need during the COVID-19 pandemic for daily maintenance and optimization of a comprehensive SARS-CoV-2 phylogeny. Thus, our approach addresses an important need for daily maintenance and refinement of a comprehensive SARS-CoV-2 phylogeny.


Subject(s)
COVID-19
8.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.01.07.22268918

ABSTRACT

The unprecedented SARS-CoV-2 global sequencing effort has suffered from an analytical bottleneck. Many existing methods for phylogenetic analysis are designed for sparse, static datasets and are too computationally expensive to apply to densely sampled, rapidly expanding datasets when results are needed immediately to inform public health action. For example, public health is often concerned with identifying clusters of closely related samples, but the sheer scale of the data prevents manual inspection and the current computational models are often too expensive in time and resources. Even when results are available, intuitive data exploration tools are of critical importance to effective public health interpretation and action. To help address this need, we present a phylogenetic summary statistic which quickly and efficiently identifies newly introduced strains in a region, resulting clusters of infected individuals, and their putative geographic origins. We show that this approach performs well on simulated data and is congruent with a more sophisticated analysis performed during the pandemic. We also introduce Cluster Tracker ( https://clustertracker.gi.ucsc.edu/ ), a novel interactive web-based tool to facilitate effective and intuitive SARS-CoV-2 geographic data exploration and visualization. Cluster-Tracker is updated daily and automatically identifies and highlights groups of closely related SARS-CoV-2 infections resulting from inter-regional transmission across the United States, streamlining public health tracking of local viral diversity and emerging infection clusters. The combination of these open-source tools will empower detailed investigations of the geographic origins and spread of SARS-CoV-2 and other densely-sampled pathogens.


Subject(s)
COVID-19
9.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.03.470766

ABSTRACT

1.Phylogenetics has been central to the genomic surveillance, epidemiology and contact tracing efforts during the COVD-19 pandemic. But the massive scale of genomic sequencing has rendered the pre-pandemic tools inadequate for comprehensive phylogenetic analyses. Here, we discuss the phylogenetic package that we developed to address the needs imposed by this pandemic. The package incorporates several pandemic-specific optimization and parallelization techniques and comprises four programs: UShER, matOptimize, RIPPLES and matUtils. Using high-performance computing, UShER and matOptimize maintain and refine daily a massive mutation-annotated phylogenetic tree consisting of all SARS-CoV-2 sequences available in online repositories. With UShER and RIPPLES, individual labs - even with modest compute resources - incorporate newly-sequenced SARS-CoV-2 genomes on this phylogeny and discover evidence for recombination in real-time. With matUtils, they rapidly query and visualize massive SARS-CoV-2 phylogenies. These tools have empowered scientists worldwide to study the SARS-CoV-2 evolution and transmission at an unprecedented scale, resolution and speed.

10.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.02.471004

ABSTRACT

Phylogenetics has been foundational to SARS-CoV-2 research and public health policy, assisting in genomic surveillance, contact tracing, and assessing emergence and spread of new variants. However, phylogenetic analyses of SARS-CoV-2 have often relied on tools designed for de novo phylogenetic inference, in which all data are collected before any analysis is performed and the phylogeny is inferred once from scratch. SARS-CoV-2 datasets do not fit this mould. There are currently over 5 million sequenced SARS-CoV-2 genomes in public databases, with tens of thousands of new genomes added every day. Continuous data collection, combined with the public health relevance of SARS-CoV-2, invites an "online" approach to phylogenetics, in which new samples are added to existing phylogenetic trees every day. The extremely dense sampling of SARS-CoV-2 genomes also invites a comparison between Likelihood and Parsimony approaches to phylogenetic inference. Maximum Likelihood (ML) methods are more accurate when there are multiple changes at a single site on a single branch, but this accuracy comes at a large computational cost, and the dense sampling of SARS-CoV-2 genomes means that these instances will be extremely rare. Therefore, it may be that approaches based on Maximum Parsimony (MP) are sufficiently accurate for reconstructing phylogenies of SARS-CoV-2, and their simplicity means that they can be applied to much larger datasets. Here, we evaluate the performance of de novo and online phylogenetic approaches, and ML and MP frameworks, for inferring large and dense SARS-CoV-2 phylogenies. Overall, we find that online phylogenetics produces similar phylogenetic trees to de novo analyses for SARS-CoV-2, and that MP optimizations produce more accurate SARS-CoV-2 phylogenies than do ML optimizations. Since MP is thousands of times faster than presently available implementations of ML and online phylogenetics is faster than de novo, we therefore propose that, in the context of comprehensive genomic epidemiology of SARS-CoV-2, MP online phylogenetics approaches should be favored.

11.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.08.04.455157

ABSTRACT

Accurate and timely detection of recombinant lineages is crucial for interpreting genetic variation, reconstructing epidemic spread, identifying selection and variants of interest, and accurately performing phylogenetic analyses. During the SARS-CoV-2 pandemic, genomic data generation has exceeded the capacities of existing analysis platforms, thereby crippling real-time analysis of viral recombination. Low SARS-CoV-2 mutation rates make detecting recombination difficult. Here, we develop and apply a novel phylogenomic method to exhaustively search a nearly comprehensive SARS-CoV-2 phylogeny for recombinant lineages. We investigate a 1.6M sample tree, and identify 606 recombination events. Approximately 2.7% of sequenced SARS-CoV-2 genomes have recombinant ancestry. Recombination breakpoints occur disproportionately in the Spike protein region. Our method empowers comprehensive real time tracking of viral recombination during the SARS-CoV-2 pandemic and beyond.


Subject(s)
Severe Acute Respiratory Syndrome
12.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.05.438352

ABSTRACT

We report a SARS-CoV-2 lineage that shares N501Y, P681H, and other mutations with known variants of concern, such as B.1.1.7. This lineage, which we refer to as B.1.x (COG-UK sometimes references similar samples as B.1.324.1), is present in at least 20 states across the USA and in at least six countries. However, a large deletion causes the sequence to be automatically rejected from repositories, suggesting that the frequency of this new lineage is underestimated using public data. Recent dynamics based on 339 samples obtained in Santa Cruz County, CA, USA suggest that B.1.x may be increasing in frequency at a rate similar to that of B.1.1.7 in Southern California. At present the functional differences between this variant B.1.x and other circulating SARS-CoV-2 variants are unknown, and further studies on secondary attack rates, viral loads, immune evasion and/or disease severity are needed to determine if it poses a public health concern. Nonetheless, given what is known from well-studied circulating variants of concern, it seems unlikely that the lineage could pose larger concerns for human health than many already globally distributed lineages. Our work highlights a need for rapid turnaround time from sequence generation to submission and improved sequence quality control that removes submission bias. We identify promising paths toward this goal.

13.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.03.438321

ABSTRACT

The vast scale of SARS-CoV-2 sequencing data has made it increasingly challenging to comprehensively analyze all available data using existing tools and file formats. To address this, we present a database of SARS-CoV-2 phylogenetic trees inferred with unrestricted public sequences, which we update daily to incorporate new sequences. Our database uses the recently-proposed mutation-annotated tree (MAT) format to efficiently encode the tree with branches labeled with parsimony-inferred mutations as well as Nextstrain clade and Pango lineage labels at clade roots. As of June 9, 2021, our SARS-CoV-2 MAT consists of 834,521 sequences and provides a comprehensive view of the virus’ evolutionary history using public data. We also present matUtils – a command-line utility for rapidly querying, interpreting and manipulating the MATs. Our daily-updated SARS-CoV-2 MAT database and matUtils software are available at http://hgdownload.soe.ucsc.edu/goldenPath/wuhCor1/UShER_SARS-CoV-2/ and https://github.com/yatisht/usher , respectively.


Subject(s)
Usher Syndromes
14.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.15.435416

ABSTRACT

Sequence simulators are fundamental tools in bioinformatics, as they allow us to test data processing and inference tools, as well as being part of some inference methods. The ongoing surge in available sequence data is however testing the limits of our bioinformatics software. One example is the large number of SARS-CoV-2 genomes available, which are beyond the processing power of many methods, and simulating such large datasets is also proving difficult. Here we present a new algorithm and software for efficiently simulating sequence evolution along extremely large trees (e.g. >100,000 tips) when the branches of the tree are short, as is typical in genomic epidemiology. Our algorithm is based on the Gillespie approach, and implements an efficient multi-layered search tree structure that provides high computational efficiency by taking advantage of the fact that only a small proportion of the genome is likely to mutate at each branch of the considered phylogeny. Our open source software is available from https://github.com/NicolaDM/phastSim and allows easy integration with other Python packages as well as a variety of evolutionary models, including new ones that we developed to more realistically model SARS-CoV-2 genome evolution.

15.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.14.426705

ABSTRACT

AO_SCPLOWBSTRACTC_SCPLOWThe COVID-19 pandemic has seen an unprecedented response from the sequencing community. Leveraging the sequence data from more than 140,000 SARS-CoV-2 genomes, we study mutation rates and selective pressures affecting the virus. Understanding the processes and effects of mutation and selection has profound implications for the study of viral evolution, for vaccine design, and for the tracking of viral spread. We highlight and address some common genome sequence analysis pitfalls that can lead to inaccurate inference of mutation rates and selection, such as ignoring skews in the genetic code, not accounting for recurrent mutations, and assuming evolutionary equilibrium. We find that two particular mutation rates, G[->]U and C[->]U, are similarly elevated and considerably higher than all other mutation rates, causing the majority of mutations in the SARS-CoV-2 genome, and are possibly the result of APOBEC and ROS activity. These mutations also tend to occur many times at the same genome positions along the global SARS-CoV-2 phylogeny (i.e., they are very homoplasic). We observe an effect of genomic context on mutation rates, but the effect of the context is overall limited. While previous studies have suggested selection acting to decrease U content at synonymous sites, we bring forward evidence suggesting the opposite.


Subject(s)
COVID-19
16.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.26.314971

ABSTRACT

As the SARS-CoV-2 virus spreads through human populations, the unprecedented accumulation of viral genome sequences is ushering a new era of "genomic contact tracing" - that is, using viral genome sequences to trace local transmission dynamics. However, because the viral phylogeny is already so large - and will undoubtedly grow many fold - placing new sequences onto the tree has emerged as a barrier to real-time genomic contact tracing. Here, we resolve this challenge by building an efficient, tree-based data structure encoding the inferred evolutionary history of the virus. We demonstrate that our approach improves the speed of phylogenetic placement of new samples and data visualization by orders of magnitude, making it possible to complete the placements under real-time constraints. Our method also provides the key ingredient for maintaining a fully-updated reference phylogeny. We make these tools available to the research community through the UCSC SARS-CoV-2 Genome Browser to enable rapid cross-referencing of information in new virus sequences with an ever-expanding array of molecular and structural biology data. The methods described here will empower research and genomic contact tracing for laboratories worldwide. Software AvailabilityUSHER is available to users through the UCSC Genome Browser at https://genome.ucsc.edu/cgi-bin/hgPhyloPlace. The source code and detailed instructions on how to compile and run UShER are available from https://github.com/yatisht/usher.

17.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.08.141127

ABSTRACT

The SARS-CoV-2 pandemic has led to unprecedented, nearly real-time genetic tracing due to the rapid community sequencing response. Researchers immediately leveraged these data to infer the evolutionary relationships among viral samples and to study key biological questions, including whether host viral genome editing and recombination are features of SARS-CoV-2 evolution. This global sequencing effort is inherently decentralized and must rely on data collected by many labs using a wide variety of molecular and bioinformatic techniques. There is thus a strong possibility that systematic errors associated with lab-specific practices affect some sequences in the repositories. We find that some recurrent mutations in reported SARS-CoV-2 genome sequences have been observed predominantly or exclusively by single labs, co-localize with commonly used primer binding sites and are more likely to affect the protein coding sequences than other similarly recurrent mutations. We show that their inclusion can affect phylogenetic inference on scales relevant to local lineage tracing, and make it appear as though there has been an excess of recurrent mutation and/or recombination among viral lineages. We suggest how samples can be screened and problematic mutations removed. We also develop tools for comparing and visualizing differences among phylogenies and we show that consistent clade- and tree-based comparisons can be made between phylogenies produced by different groups. These will facilitate evolutionary inferences and comparisons among phylogenies produced for a wide array of purposes. Building on the SARS-CoV-2 Genome Browser at UCSC, we present a toolkit to compare, analyze and combine SARS-CoV-2 phylogenies, find and remove potential sequencing errors and establish a widely shared, stable clade structure for a more accurate scientific inference and discourse. ForewordWe wish to thank all groups that responded rapidly by producing these invaluable and essential sequence data. Their contributions have enabled an unprecedented, lightning-fast process of scientific discovery---truly an incredible benefit for humanity and for the scientific community. We emphasize that most lab groups with whom we associate specific suspicious alleles are also those who have produced the most sequence data at a time when it was urgently needed. We commend their efforts. We have already contacted each group and many have updated their sequences. Our goal with this work is not to highlight potential errors, but to understand the impacts of these and other kinds of highly recurrent mutations so as to identify commonalities among the suspicious examples that can improve sequence quality and analysis going forward.

SELECTION OF CITATIONS
SEARCH DETAIL